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Fractal geometry of critical systems

N. G. Antoniou, Y. F. Contoyiannis, and F. K. Diakonos
Department of Physics, University of Athens, GR-15771 Athens, Greece

~Received 30 March 2000!

We investigate the geometry of a critical system undergoing a second-order thermal phase transition. Using
a local description for the dynamics characterizing the system at the critical pointT5Tc , we reveal the
formation of clusters with fractal geometry, where the term cluster is used to describe regions with a nonva-
nishing value of the order parameter. We show that, treating the cluster as an open subsystem of the entire
system, new instanton-like configurations dominate the statistical mechanics of the cluster. We study the
dependence of the resulting fractal dimension on the embedding dimension and the scaling properties~isother-
mal critical exponent! of the system. Taking into account the finite-size effects, we are able to calculate the size
of the critical cluster in terms of the total size of the system, the critical temperature, and the effective coupling
of the long wavelength interaction at the critical point. We also show that the size of the cluster has to be
identified with the correlation length at criticality. Finally, within the framework of the mean field approxima-
tion, we extend our local considerations to obtain a global description of the system.

PACS number~s!: 05.70.Fh, 64.60.Ak
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I. INTRODUCTION

Understanding the geometry of systems near a sec
order critical point is the subject of numerous recent wo
@1#. Most of these works considered dynamics in discr
space~lattice!, and tried to explain the formation of cluste
with fractal geometry on the embedding lattice in terms
the scaling properties~critical exponents! of the system@2,3#.
In a recent work@4#, we proposed a mechanism in order
understand the formation of fractal clusters atT5Tc for sys-
tems defined in a continuous space. Based on a scale in
ant effective action describing the dynamics at the criti
point, we were mainly interested in revealing how this d
namics leads to the formation of critical clusters. A gene
class of saddle points of the effective action atT5Tc turns
out to dominate the configurations contributing to the pa
tion function if we consider the statistical mechanics of
open subsystem~cluster! of the global critical system. In the
present work we present in more detail and completeness
method used in Ref.@4# to obtain a consistent picture of th
local geometry at the transition point for one-dimensio
systems, and we then apply our approach in order to desc
critical systems in higher dimensions. We also take into
count finite-size effects, and we discuss the possibility
using different functional realizations for the order parame
characterizing the system at the critical point. Based o
local description of the critical system we propose an al
rithm, using arguments within the framework of the me
field approximation, to construct a global system and to
termine its scaling properties.

The starting point in our investigation is the effective a
tion of a thermal system at the critical pointT5Tc , specified
in d dimensions in terms of a macroscopic fieldf ~order
parameter! as follows:

Gc@f#5g1LbE ddxF1

2
~¹df!21g2LguL2dfud11G .

~1!
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In Eq. ~1!, g1 and g2 are dimensionless couplings,f
; (volume)21, and the ultraviolet cutoffL of the underly-
ing microscopic theory fixes the coarse graining scaleRc
'L21 of the effective system. Equation~1! leads to the
standard equation of state atT5Tc ,

dGc

df
;fd ~f.0!,

and the indexd is identified with the isothermal critical ex
ponent of the system. Action~1!, being dimensionless, im
plies b52(d12) andg52d12. Also introducing the di-
mensionless quantitiesf̂5L2df and x̂i5Lxi , we rewrite
the effective action~1! as follows:

Gc@f̂#5g1E ddx̂F1

2
~¹f̂!21g2uf̂ud11G . ~2!

The scalar quantityf describes in general the density of a
extensive physical quantity characterizing the phase tra
tion ~like, for example, magnetization density or partic
density!. Let us now mention some examples of theor
which belong to the class of physical systems descri
through the effective action@Eq. ~2!#.

O(N) three-dimensional (3D) effective theory: The ac-
tion, in the largeN limit, for spherically symmetric order
parameter in the internalO(N) space, is written as@5#

Gc@f#5l5L25E d3xW F1

2
~¹f!21

2

3 S 2pl5

N D 2

L8~L23f!6G ,
wherel5L/Tc . This action, forf̂5L23f andxŴ5LxW , has
the form

Gc@f̂#5l5E d3xŴ F1

2
~¹f̂!21

2

3 S 2pl5

N D 2

uf̂u6G .
It belongs to the general class of Eq.~2!, with g15l5, g2
5 2

3 (2pl5/N)2, d53, andd55.
3125 ©2000 The American Physical Society
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3D Ising model: The effective actionGc@s# which effec-
tively describes the QCD at the critical point (T5Tc) @6#, is
written as

Gc@s#5Tc
21E d3xW F1

2
~¹s!21GTc

4~Tc
21s!d11G ,

where the macroscopic fields; (length)21. This action,

for ŝ5L21s andxŴ5xWL, has the form

Gc@ŝ#5lE d3xŴ F1

2
~¹ŝ!21Gld23ŝd11G .

It belongs to the general class of Eq.~2!, with g15l, g2
5Gld23, andd53. We recall thatl5L/Tc .

Throughout this work we use the conventionkB51 ~Bolt-
zmann constant!, and the energy is given in inverse leng
units. We will also use, for simplicity, the notation (f,xi)
instead of (f̂,x̂i) meaning always, unless otherwise stat
dimensionless quantities.

The paper is organized as follows: In Sec. II we inves
gate the statistical mechanics of the critical system fod
51 (d is the embedding space dimension! described by an
effective action of the form of Eq.~2!. The formation of
fractal clusters is shown, and the corresponding geomet
characteristics~size and dimension! are determined. In Sec
III we extend the analysis to higher dimensions. In Sec.
we study the dependence of the geometrical properties o
critical clusters on the coarse graining scale of the effec
theory. We also apply our approach to critical systems wit
more general functional form of the order parameter. Tak
care of the finite-size effects, we determine the correlat
length in terms of the size of the formed clusters. Then us
a mean field approach, we construct the global system
superposition of individual clusters and we explore its sc
ing ~geometric! properties. Finally in Sec. V we summariz
our main results and give a brief outlook. Some lengthy f
mulas referred to in the main text are given in the Append

II. 1D SYSTEM

The statistical mechanics of the critical system is de
mined through the partition function

Z15E D@f#e2Gc[f] . ~3!

The local description implies that the integration measure
Eq. ~3! is over field configurations defined in an open ballV,
with radiusR and centerx̄, a subset of the spaceV ~which in
fact can be infinite! occupied by the entire system. We call
cluster C the set consisting of points belonging
V (C,V), for which the order parameterf is greater than
or equal to a minimum value~cutoff! fmin . We then identify
x̄ with the center of the clusterC. Without loss of generality
we can setx̄50. The local geometrical properties of th
system are determined through the scaling properties of
extensive quantities characterizing the clusterC as we vary
the radiusR. In order to illustrate our method we will firs
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consider, for simplicity, the one-dimensional case. Howev
the extension to higher dimensions, as we will see in Sec.
is straightforward.

In the one-dimensional case the effective action of
critical system (T5Tc), resulting from Eq.~2!, is given by

Gc@f#5g1E
0

R

dxF1

2 S df

dx D 2

1g2ufud11G . ~4!

Here we will consider models for which the conditiong1
@1 is valid. This requirement allows us to use the sadd
point approximation to evaluate the path integration in E
~3! by replacing it through a summation over the sad
points of action~4!. As the subsystemV is open, no bound-
ary conditions restrict the configurations which contribute
the path integral~3!. This point of view is essential in ou
approach.

The saddle-point configurationsf(x) fulfill the Euler-
Lagrange equationd2f/dx252]U(f)/]f, whereU(f) is
the concave pontentialU(f)52g2ufud11. Considering this
equation as the motion of a classical particle, we obtain
first-order equation

E5
1

2 S df

dx D 2

2g2ufud11, ~5!

whereE is a conserved~during the classical motion! quantity
identified with the total energy of the moving particle. Equ
tion ~5! can be integrated~for details, see the Appendix! to
give, for E50, instanton-like solutions of the form

f~x!5A1ux2xou22/(d21), A15Fg2

2
~d21!2G21/(d21)

,

~6!

with

xo5A2/~d21!Ag2„f~0!…22/(d21).

Thus, for E50, the position of the singularityxo depends
only on the initial conditionf(0). ForE5” 0 the solution has
the form f(x)5A1ux2xo8u

22/(d21), where now xo8
5xo8„f(0),E… ~see the Appendix!. However, configurations
with E5” 0, contribute to the partition functionZ with a sup-
pression factore2g1RuEu, suggesting that the dominant sadd
points in the path summation@Eq. ~3!# are those solutions o
the equation of motion for whichE'0. In this case, Eq.~4!
simplifies to

Gc@f#52g1g2E
0

R

dx„f~x!…d11.

Only configurations withxo.R give a nonvanishing contri-
bution to the path integral@Eq. ~3!#. In fact, the partition
function is dominated by those saddle points for whichxo
@R. Since xP(2R,R) we can easily takef(x)5const
5A1xo

22/(d21) . It is straightforward to show that these sol
tions correspond to the long wavelength modes of the fi
f(x) by taking the Fourier transform of Eq.~6!. We obtain
f (k);eikxo/@(d21)kd23#, and the envelope off (k) is given
by k;m/xo .

Using the above approximation, we have
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Gc5G1Rxo
22[(d11)/(d21)] , ~7!

with G152g1g2A1
d11. The summation over the saddle poin

of action ~4! becomes, within this approximation, an ord
nary integration over xo with measure: Df5dm(xo)
'xo

2[(d11)/(d21)]dxo . As stated above the singularityxo

must be located outside the clusterC to give a nonvanishing
contribution to the partition function of the one-dimension
system. This condition fixes the lower limit in the integratio
over xo to bexo,min5R. To determine the upper limit ofxo
one has to go back to the definition of the clusterC given
previously. Without loss of generality, we can take the e
tensive quantity characterizing the geometry inC to be the
magnetizationM5*0

Rf(x)dx fulfilling the conditionM>m,
with m5*0

Rfmindx5Rfmin . In the approximation of con-
stant configurations for the order parameterf we obtain the
upper limit for xo asxo<(AR/m)(d21)/2.

The one-dimensional partition function in now written

Z15E
R

~A1R/m!~d21!/2

dxoxo
2 @~d11!/~d21!#e2G1Rxo

22[(d11)/(d21)]
.

Using this expression, it is straightforward to calculate
mean value of the magnetization in the clusterC:

K E
0

R

f~x!dxL 5
A1

Z E
R

(A1R/m)(d21)/2

dxoxo
2[(d11)/(d21)

3S E
0

R

dxA1xo
22/(d21)D e2G1Rxo

22[(d11)/(d21)]
.

~8!

Using Eq.~8!, we can show analytically~see Sec. IV! that
in the largeG1 limit ( G1@1) there are three characterist
regions determining the behavior of the integral in Eq.~8!.
Setting Rd5A1

2(d11)/dm (d11)/dG1
1/d and Ru5G1

(d21)/(d11) ,
we find the following

~i! For the regionRd!R!Ru , we have ^*0
Rf(x)dx&

;Rd/(d11), with coefficient

a1'A1G1
21/(d11)

GS 2

d11D
GS 1

d11D ,

leading to a fractal structure of the cluster around the po
x50 with fractal mass dimension@7,8# dF5d/(d11).

~ii ! This behavior crosses over forR@Ru to a different
power law, ,*0

Rf(x)dx.;R(d23)/(d21) suggesting the

presence of a fractal with mass dimensiond̃F5(d23)/(d
21) at large scales.

~iii ! The lower limit Rd defines a minimal scale of th
critical system, below which the fractality is broken.

The fractality in the central region characterizes the cr
cal system in the sense that it corresponds to the sca
behavior in the vicinity of the local observer whenm→0.
The crossover scaleRu gives a measure of the correlatio
length of the finite system atT5Tc . In Fig. 1~a! we show
the numerical results for the calculation of^M & using the
l
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-
ng

valuesG1553108 and d55. We recognize the central re
gion and the two scalesRd andRu . In Fig. 1~b! we plot, for
the same values ofG1 andd, the results for the mean mag
netization if we ignore the breaking atRd(m→0).

III. FRACTAL CLUSTERS FOR DÌ1

Let us now extend our approach to higher dimensio
starting from the two-dimensional case. We write the effe
tive action~2! for d52,

Gc@f#5g1E d2rWF1

2
u¹fu21g2ufud11G ,

and look for classical saddle points in an open subset ofR 2.
The Euler-Lagrange equation, in this case, has the form

¹2f5~d11!g2fd,

FIG. 1. ~a! The mean magnetization̂M (R)& as a function ofR
for a 1D critical system. The parameters are chosen so thatG155
3108 andm51. A linear fit is also shown in order to indicate th
two different fractality regions described in Sec. II.~b! The same
plot as in~a!, but now withm50. The scaleRd for the breaking of
the fractality in this case is absent. All presented quantities ar
arbitrary units.
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and the corresponding instanton-like saddle points are:

d52, f2~rW !5A2urW2rWou22/(d21),
~9!

A25S g2

4
~d21!2~d11! D 21/(d21)

.

We proceed in a similar way as for the one-dimensional ca
considering the partition functionZ25*D@f#e2Gc[f] . In the
path summation contribute, similarly to the one-dimensio
~1D! case, saddle points for whichrWo lies outside the cluste
C. The main effect in the statistical mechanics of the
system is obtained through the summation over paths w
urWou@R(R is, once again, the radius ofC) which are in fact
constant configurations determined by the 2D parameterrWo .
In close analogy with the one-dimensional treatment,
write the path integral inZ2 as an ordinary integral overrWo .
In this regime~constant configurations! the two-dimensional
effective action is

Gc5G2R2r o
22[(d11)/(d21)] ,

with

G25pg1F 2A2
2

~d21!2
1g2A2

d11G52pg1g2A2
d11 S d13

4 D .

Performing the calculation of the mean value of the mag
tization ^M (R)&5^*d2rWf(rW)&, characterizing the two-
dimensional critical cluster and using the notationRd

5A2
2(d11)/2dm (d11)/2dG2

1/2d and Ru5G2
(d21)/4, we find the

following
~i! For Rd!R!Ru ,

^M ~R!&;R2d/(d11), ~10!

with coefficient

a2'pA2G2
2 1/~d11!

GS 2

d11D
GS 1

d11D .

This suggests the formation of a geometrical stucture inC
with fractal mass dimensiondF52d/(d11).

~ii ! This behavior crosses over forR@Ru to a power law
^M (R)&;R2[(d22)/(d21)] describing a local fractal with mas
dimensiond̃F52(d22)/(d21) at large scales.

~iii ! Finally, as in the 1D case, forR!Rd the fractality is
broken and the mass dimension coincides with the emb
ding dimension.

The extension to dimensionsd>3 needs more care. In
this case we must take into account the relation between
isothermal exponentd and the anomalous dimensionh: d
5(d122h)/(d221h) @9#. But let us first examine the
caseh50. Repeating the procedure followed in the 1D a
2D cases we analytically obtain the saddle points of
d-dimensional critical effective action:
e,

l

th

e

-

d-

he

e

f5Ad~r o
22r 2!(22d)/2, Ad5F d22

~2g2!1/2
G (d22)/2

r o
(d22)/2,

~11!

and transforming the path summation in the partition fun
tion Zd into an ordinary integration overr o , we find

^M ~R!&5,E
c
ddrf.;R11d/2 ~12!

for Rd!R,`. This means that, ford53, Ru→`. That is,
the crossover to the second fractal has disappeared. W
happens now if we takeh5” 0 into account? Consider th
case 0,h,1. For a wide range of universality classes, i
cluding theO(4) theory whereh'0.034 @10#, the anoma-
lous dimensionh obeys this condition. Actually for 3D sys
temsh is very close to zero@11#. The corresponding Euler
Lagrange equation

¹d
2f5~d11!g2f (d122h)/(d221h) ~13!

cannot be solved exactly. Only an approximate instanton-
solution can be obtained analytically:

fd~r !5Ad~r o
22r 2!(22d)/2,

Ad5S ~d22!r o

A2g2
D (d22)/2S d22

A2g2r o
D dh/4

. ~14!

Details concerning this calculation are given in the Appe
dix. Based on solution~14!, and following the process ap
plied for one and two dimensions, we determine^M (R)& for
spherical symmetric clusters ind>3 dimensions. UsingRd

5a2(d11)/ddm (d11)/ddGd
1/dd andRu5Gd

21/[d1q(d11)] with

a5S d22

A2g2
D [d221(dh/2)]/2

,

Gd5
2ad11pd/2

dG~d/2!
g1g2,

and

q5

22d2
dh

2

2
,

we obtain the following.
~i! For Rd!R!Ru ,

^M ~R!&;R11[(d2h)/2] ~15!

with coefficient

ad'
2pd/2

dG~d/2!
Gd

21/(d11)a

GS 2

d11D
GS 1

d11D .

~ii ! For R@Ru , the power law
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^M ~R!&;R11[d(22h)/4].

~iii ! A breaking of the fractality forR!Rd .
Comparing Eqs.~12! and~15! we find, forh50, the same

power law. This serves as a consistency check of the
proximation we used. We calculated the saddle points of
~13! numerically. We also calculated, in the constant co
figuration regime, the mean magnetization^M (R)&. The re-
sults are presented in Fig. 2. In Fig. 2~a! we plot both the
numerical and approximate solutions to the Euler-Lagra
equation ford53 andh50.34.1 The characteristic behavio
of ^M (R)& for d53 is presented in Fig. 2~b!. Here we have
usedG35102 and h50.34. The breaking of the fractalit
~for R!Rd) is clearly reproduced, while the crossover
suppressed due to the small value ofh.

Putting together our results for one, two, and three dim
sions, and denoting bydF the fractal dimension in the centra

1We used this value instead ofh50.034 valid forO(4) in order
to magnify the difference between the approximate and nume
solutions.

FIG. 2. ~a! A typical 3D instanton-like saddle point forh
50.34. Both the analytic approximation~dotted line! and the nu-
merical calculation~solid line! are shown.~b! The mean magneti-
zation ^M (R)& for the 3D case using saddle points of the for
presented in~a! to perform the corresponding statistical averagin
As in Fig. 1, the displayed quantities are in arbitrary units.
p-
q.
-

e

-

region of the clusterC and byd̃F the fractal dimension be
yond the corresponding upper limitRu , we have found

dF5
dd

d11
, d51,2,3, . . . , ~16!

d̃F5d2
2

d21
, d51,2, ~17!

while for d>3 we have

dF2d̃F5
h~d22!

4
1O~h2!. ~18!

A remarkable property of the geometry of the cluster is t
dF.d̃F for all dimensions, indicating a dilution of the cluste
C for distances greater thanRu from the center of the cluster
In other words, the sizeRu of the cluster gives a measure o
the correlation length in the finite system. For 3D system
however, the maximal size of a single cluster (Ru) coincides
practically with the size of the whole system (h'0, dF

'd̃F), and one recovers the conventional behavior of
correlation lengthj in a second-order phase transition (j is
of the order of magnitude of the size of the system!. For
critical systems of low dimensionality (d,3) the association
of the correlation length with the size of the system nee
particular care, and this issue will be discussed in detai
Sec. IV.

IV. EXTENSIONS AND FINITE-SIZE EFFECTS

In Sec. III we showed the appearance of a fractal geo
etry for cluster C in the central region of scalesRd!R
!Ru . For R,Rd we obtain the breaking of fractality, an
beyondRu a more dilute fractal emerges. Therefore the lim
its Ru and Rd determine the part of the cluster with fract
dimensiondF . In the following we will investigate how a
change of the coarse graining scaleL affects the fractality
region.

We consider the transformation

L215lL821, ~19!

where the ultraviolet cutoffL fixes the coarse-graining sca
(L21). Then Eq.~2! becomes

Gc@f#5g1ld12L82(d12)E ddxF1

2
~¹df!2

1g2l2(2d12)L82d12uldL82dfud11G . ~20!

Settingf̂85L82df and x̂85L8x, Eq. ~20! simplifies to

Gc@f#5g1ld12E ddx̂8F1

2
~¹df̂8!2

1g2ld(d22)1(d22)uf̂8ud11G ,
where the new constantsg18 andg28 have the values

al

.
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g185g1ld12,
~21!

g285g2ld(d22)1(d22).

We have seen that the dimensionless values ofRu andRd for
the 1D case areRu5G1

(d21)/(d13);g1
(d21)/(d13)g2

22/(d13)

andRd5A1
2(d11)/dG1

1/d;g1
1/dg2

1/d . According to Eq.~21! the
new values for the dimensionless limits areRu85lRu and
Rd85lRd . Using Eq.~19!, we find that the quantitiesL21Ru

andL21Rd do not depend on the choice of the cutoffL:

L821Ru85L21Ru ,
~22!

L821Rd85L21Rd .

We may now extend these calculations for t
case d52, where Ru5G2

(d21)/4;g1
(d21)/4g2

21/2 and Rd

5A2
2(d11)/2dG2

1/2d;g1
1/2dg2

1/2d , and we again obtain Eqs
~22!. More complicated is the cased>3. If we neglect the
anomalous dimensionh we recover Eqs.~22!, but takingh
into account we cannot find an analytic expression for
limits Rd andRu . However, using the approximate solutio
~14!, we can prove the validity of Eqs.~22! to a leading order
in h.

Let us now consider the case when the order param
is not directly the scalar fieldf(x) but a powerfn(x), n
.0. The extensive variable characterizing the critical geo
etry is now taken to be

M ~R!5E
C
fn~xW !ddx.

Performing the calculation of̂M (R)& at the level of the
saddle-point approximation, we obtain the following

~i! In the central fractality regionRd
(d)!R!Ru

(d) , the di-
mension is

dF
(d)5dS 12

n

d11D , ~23!

where the embedding dimensiond takes the values:d
51,2,3, . . . .

~ii ! The geometry in the external regionR@Ru
(d) is de-

scribed through the dimension

d̃F
(d)5d2

2n

d21
, d51,2, ~24!

also valid ford>3 if we neglect the anomalous dimensio
h.

Using the obvious conditiond̃F
(d)>0, Eq.~24! leads to an

upper limit for the value ofn:

n<
d~d21!

2
.

Using as an example the parameter valuesd51 andd55,
we obtainn51 and 2 as possible values of the powern. For
this special choice ofd andd we obtain a remarkable prop
erty when the order parameter isf2: in this cased̃F

(1)50, and
thereforeRu

(1) coincides with the correlation length. Con
e

er

-

cerning the limitsRd
(d) andRu

(d) and their dependence on th
powern, we find that~i! the upper limitRu

(d) does not depend
on n, and~ii ! the lower limitRu

(d) has the following form for
a generaln:

Rd
(d)5G1

n/[d(d112n)]S Ad

m1/nD 2[n(d11)]/[d(d112n)]

.

We now turn to the question of critical cluster formatio
in a finite system. The effective action@Eq. ~2!# is in fact
valid for the ideal case of an infinite system. In order to ta
finite-size effects into account in a consistent way we have
add the term1

2 m2f2 in Eq. ~2!. In the following we will
consider the statistical mechanics, within the theoreti
framework developed so far, of the modifed effective actio
which includes the above mentioned quadratic~mass! term
in f. Thereby we restrict ourselves in the simplified 1D ca
although our results can be extended to higher dimens
without difficulty. For the isothermal critical exponent w
also use the valued55. The central interest in our invest
gations is to determine the changes induced to the up
limit Ru of the central fractality region, due to the presen
of the mass term. This may lead us to a better understan
of the relation betweenRu and the correlation length of th
critical system.

The saddle points of the modified action are obtained~in
the 1D case! using the energy integral@Eq. ~5!#. The domi-
nant configurations are those for whichE50. We then have

E
0

x

dj56E
f(0)

f(x) df

~m2f212g2f6!1/2
. ~25!

Solving Eq.~25! for f, we obtain

f~x!56
A2c̃me6mx

~m222g2c̃2e64mx!1/2
,

~26!

c̃5
f2~0!

11A11
2g2

m2
f4~0!

.

Solution ~26! for small m simplifies to

f~x!5A m

4g2c̃
ux2xou21/2, xo5

m222g2c̃2

8g2c̃2m
, ~27!

and taking the limitm→0 we recover Eq.~6! for d55.
The position of the singularity in Eq.~26! is

x̃o56
1

4m
ln

m2

2g2c̃2
. ~28!

It is easy to show thatx̃o→xo @see Eq.~6!# for m→0. In the
following and up to the end of this section we will, for sim
plicity, drop the tilde overxo . Wheneverxo appears in the
following formulas it means expression~28!.

Inserting Eq.~28! into solution~26!, we finally obtain
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f~x!5SA 2

g2
mD 1/2 em(x2xo)

~12e4m(x2xo)!1/2
. ~29!

Repeating the arguments of Sec. II we perform the p
summation in the partition function of the finite system usi
the constant solutions, deduced from Eq.~29!, for xo@x:

f~x!5SA 2

g2
mD 1/2 e2mxo

~12e24mxo!1/2
. ~30!

Within this approximation the effective action of the fini
system is

Gc~R,xo!5G̃R
e26mxo

~12e24mxo!3
, G̃525/2g1g2

21/2m3.

~31!

The path summation in the partition function goes over to
ordinary integration overxo , with a measure obtained from
Eq. ~30!:

Z;E
R

xomax
dxo@m3/2e2mxo~12e24mxo!21/2

2m3/2e25mx0~12e24mx0!23/2#

3expS 2G̃R
e26mxo

~12e24mxo!3D . ~32!

In the limit m→0, Eq. ~32! becomes

Z;E
R

xomax
dxoxo

23/2e2G1Rxo
23

,

recovering the expression for the partition functionZ1 found
in Sec. II.

Now setting

v~z!5
G̃R

8 sinh3~2mz!
,

from Eq. ~32! we obtain

Z;E
v(xo,max)

v(R)

dt f~ t !e2t, ~33!

where f (t) is given by

f ~ t !5m1/2H S G̃R

t
D 1/6

2FA11
1

4
S G̃R

t
D 2/3

2
1

2
S G̃R

t
D 1/3G

3S G̃R

t
D 1/2J ~G̃R!21

A11
1

4
S G̃R

t
D 2/3

S G̃R

t
D 1/3

. ~34!

The value ofRu is then determined through the conditio
v(Ru)51. In the limitm→0 we findRu5227/4g1

1/2g2
21/4, in
th

n

accordance with the results obtained in Sec. II. Form@1, we
obtain an analytic expression forRu :

Ru5
lnm

2m
. ~35!

For generalm, however,Ru can be determined only numer
cally. In Fig. 3 we present the results for the dependence
Ru on m, numerically solving the equationv(Ru)51. We
have usedG̃51. The quantity 1/m is actually the linear size
of the critical system. For a large system (m21@1), the clus-
ter sizeRu becomes saturated, becoming independent ofm.
The long range correlation, in this case, is generated by
cesive convolutions of neighboring clusters. In other wor
the picture for the global system, emerging from our resu
~Fig. 3!, is a superposition of fractal clusters with finite siz
which, by coalescense, may create long range ordering in
critical system. In order to illustrate this effect, we have co
structed, by simulation, a global system in two dimensions
a set of softly interacting clusters with prescribed geome
cal properties. In fact, based on a mean field approxima
scheme, it is straightforward to determine the distribution
N clusters,P(RW 1 , . . . ,RW N), with centers located at the point
(RW 1 , . . . ,RW N) in the areaSg of the global system. For this
purpose we consider the potential term in the effective
tion,

U~f̄ !5g1g2E
Sr

d2rW8@f̄~rW8!#d11,

~36!

f̄5
1

Sr
K E

Sr

d2rW8f~rW8!L ,

whereSr is the area occupied by a cluster of radiusr, and the
mean fieldf̄(rW) is written, according to our results in Se
III, as follows:

FIG. 3. The upper limitRu of the central fractality region for
d51 as a function of the size 1/m of the critical system. We use
arbitrary units forRu andm.
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f̄~rW !5

GS 2

d11D
GS 1

d11D S 2pg1g2

~d13!

4 D 21/(d11)

r 22/(d11)

~Rd<r<Ru! ~37!

From Eqs.~36! and ~37!, we obtain

U~f̄ !5
1

2p S GS 2

d11D
GS 1

d11D D
d11

S 4

d13D E
0

2p

du lnS R~u!

Rd
D ,

~38!

whereR(u) specifies the distortion of the area occupied
the cluster in question, owing to a state of coalescense
neighboring clusters. Introducing the mean radiusR̄5R( ū)
in integral ~38!, we finally obtain

U~f̄ !5
1

2S GS 2

d11D
GS 1

d11D D
d11

S 4

d13D lnS S̄

Sd
D ,

Sd5pRd
2 , S̄5pR̄2, ~39!

whereS̄ is a measure of the area occupied by a distorted~in
general! cluster. The distribution ofN clusters, in this pic-
ture, P(RW 1 , . . . ,RW N);) i 51

N e2Ui (f̄), is given by the follow-
ing area law:

P~RW 1 , . . . ,RW N!5ZN
21Sd

Nad~S̄1S̄2 , . . . ,S̄N!2ad,

ad5
1

2S GS 2

d11D
GS 1

d11D D
d11

S 4

d13D , ~40!

ZN5
Sd

Nad

N! E
Sg

d2RW 1 , . . . ,d2RW N~S̄1S̄2 , . . . ,S̄N!2ad .

The smallness of the exponentad in Eqs. ~40! (ad
'0.006 ford55) guarantees that the interaction of cluste
is very weak, leading to a random distributio
P(RW 1 , . . . ,RW N) in the areaSg and to a Poisson behavior o
the partition function,ZN'Sd

Nad(Sg
N/N!). It permits us,

therefore, to treat the global system as an almost ideal ga
clusters. The parameters of the effective theory, as wel
the size of the critical system, determine then the numbe
formed clusters, the density within each cluster, and the
of each cluster.

It is now straightforward to construct the global system
a set of softly interacting clusters with prescribed geome
cal properties. For simplicity let us consider a system
which the order parameter is interpreted as density of p
ticles. Given the linear sizeR, the isothermal critical expo
nentd and the effective couplingsg1 andg2 we calculate the
th

s

of
s

of
e

s
i-
r
r-

sizeRu of a single cluster and the corresponding number
clustersNcl5(R/Ru)2 in the system. The number of particle
n within each cluster is then given through Eq.~10!. The
entire net of clusters is constructed in two steps. First
generate the positions of the centers of the clusters, trea
them as uniformly distributed random variables over
square with siteR. Then we generate the points inside ea
cluster with a distribution function specified by Eq.~10!. If
two clusters~say thei th and thej th clusters! overlap, then a
point in the i th cluster is taken into account if the neare
center to it is the center of thei th cluster, otherwise this poin
is neglected. Such a construction is presented in Fig. 4.
have used the parameter valuesR51, d55, g1550, and
g251.

Although the fractal mass dimension of each cluster is
same, the resulting global set turns out to have a differ
fractal dimension. In fact, calculating the generalized dim
sions of the global set we observe that its geometric struc
does not correspond to a pure monofractal set. Here we h
used the method of factorial moments to perform this ana
sis @12#. We divide the region of the global system intoM2

boxes of linear sizel (M5R/ l ). Denoting byni the number
of points within thei th box we define thepth order factorial
moment of the distribution of the points of the global set
space as

F (p)~M !5

1

M2 (
i 51

M2

ni~ni21!•••~ni2p11!

S 1

M2 (
i 51

M2

ni D p . ~41!

For a fixed value ofp, the momentF (p)(M ) possesses a
power-law dependence onM ~for M@1), provided that the

FIG. 4. The global 2D critical system described through an
fective action of the form of Eq.~1!. We used the parametersg1

550, g251, andd55. Each full circle represents a pointxW in the

2D space occupied by the critical system withf(xW ).fmin . The
coordinatesx andy are given in arbitrary units.
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point-set under consideration has a fractal structu
F (p)(M );Msp. The exponentsp is related to the fractal di-
mension of the corresponding point set:sp5(p21)(d
2dp). The dimensionsdp are the generalized dimension
characterizing the systemd2, being the corresponding ave
age fractal dimension. For a monofractal set the general
dimension spectrum is given asdp5d2 for p53,4, . . . . We
have calculated the first three factorial moments (p52, 3,
and 4! as a function ofM for the set shown in Fig. 4. The
results are shown in a log-log plot in Fig. 5. We find t
exponents~slopes in the log-log plot! s250.65, s351.61,
ands452.6, suggesting that the underlying set is a multifra
tal. A deeper understanding of the dimension spectrum of
global system based on the construction described above
subject for a future investigation.

V. CONCLUSIONS

We have studied in detail the formation of critical cluste
in a wide class of systems, undergoing a thermal phase t
sition of second order. We have used suitable, instanton-
saddle-point configurations for the local-field fluctuations,
order to saturate the path summation of the partition fu
tion. In this treatment we were able to describe the criti
system locally, and specify the geometrical properties o
single critical cluster in terms of the parameters of the eff
tive action, at the critical point. Our main results are summ
rized as follows.

~1! In critical systems of low dimensionality (d,3), there
exist two characteristic scales (Rd ,Ru) which specify the
geometry of any single critical cluster, namely, its maxim
size (Ru) and its fractality regionRd!R!Ru . The fractal
dimension isdF5dd/(d11), in agreement with other trea
ments on a lattice, and the minimal scaleRd , below which
fractality breaks down, is the analog of the lattice spacing
any treatment in discrete space.

~2! Beyond the scaleRu (R@Ru), the fractal dimension
crosses over to smaller values,d̃F,dF , and for a suitable
choice of the order parameter@fn(x) with n5d(d21)/2] it

FIG. 5. The first three factorial moments for the point set p
sented in Fig. 4. The linear fits indicate the slopes of the co
sponding moments suggesting the multifractality of the underly
set.
:

ed
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e
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n-
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-
l
a
-
-

l

n

may even vanish (d̃F50). Therefore, the scaleRu can be
associated with the direct correlation length,jd'RuL21 @9#,
which coincides with the maximal size of a single cluster

~3! For sufficiently large systems~size@L21) the direct
correlation length (jd'RuL21) is independent of the size o
the system~Fig. 3!, and remains finite even in the thermod
namic limit ~infinite system!.

~4! The global system is built up by a random distributio
of critical clusters which may overlap, giving rise to a lon
range total correlation, and therefore to density fluctuatio
at all scales. We have shown the validity of such a mec
nism in two dimensions by developing a suitable algorith
in order to construct the global system, based on the lo
description. Our results show that the entire critical syst
develops strong density fluctuations, of multifractal natu
in a wide range of scales, far beyond the size of a sin
cluster~Figs. 4 and 5!. A deeper understanding of this glob
structure, and in particular of the connection between
fractal geometry of a single cluster and the multifractal sp
trum of the entire system, remains a challenging, open qu
tion.

~5! In 3D critical systems, the anomalous dimension
approximately zero (h'0), and the crossover scaleRu as-
sociated with a single cluster coincides practically with t
size of the global system (dF'd̃F). This observation leads to
a simple picture according to which the development of flu
tuations at all scales, at the critical point, is realized throu
the formation of self-similar clusters at all sizes. The ma
mum cluster size (Ru) coincides with the size of the globa
system, and gives a measure of the correlation length wh
becomes infinitely large, in the thermodynamic limit~infinite
system!. In this case the geometry of the global system c
incides with the geometry of a single cluster and therefor
remains monofractal with the same fractal dimensiondF .

Concluding, we have investigated the geometrical str
ture of critical fluctuations, developed locally in a therm
system which is described effectively by a scalar field. T
formation of fractal clusters with a mass dimensiondF , fixed
by the universality class, has been revealed, and the me
nism for generating fluctuations at all scales, in the en
system, based on the local properties, has been discuss
is of interest to note that the fluctuations of the global syst
obey a different geometry in 3D critical systems~monofrac-
tal!, and in critical systems of low dimensionality,d,3
~multifractal!. The reason for this different behavior is du
essentially to the fact that in 3D systems, described by sc
theories, the anomalous dimensionh turns out to be very
small (h'0).

APPENDIX

Integrating the first-order differential equation~5!, we ob-
tain

E
0

x

dj56E
f(0)

f(x) df

@2~E1g2fd11!#1/2
.

It follows that

-
-

g
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x56
1

A2E
S E

g2
D 1/a

I , ~A1!

where

a5d11,

I 5E
r 1
a

r 2
a c

1
a 21

~11c!1/2
dc,

c5
g2

E
fa,

~A2!

r 15S g2

E D 1/a

f~0!,

r 25S g2

E D 1/a

f~x!.

The integralI can be determined analytically:

I 5E
0

r 2
a c (1/a)21

~11c!1/2
dc2E

0

r 1
a c (1/a)21

~11c!1/2
dc

5aF r 2 2F1S 1/2,1/a;11
1

a
,2r 2

aD
2r 1 2F1S 1/2,1/a;11

1

a
,2r 1

aD G , ~A3!

where 2F1 is the hypergeometric function.
Inserting the formula@13#

2F1~a,b;g;z!5
G~g!G~b2a!

G~b!G~g2a!
~21!az2a

2 F1

3S a,a112g;a112b;
1

zD
1

G~g!G~a2b!

G~a!G~g2b!
~21!bz2b2 F1
l

G.

v

,

3S b,b112g;b112a;
1

zD
into Eq. ~A3! we obtain

x56
c1

A2g2

~f~x!12(1/a) f 12f~0!12(1/a) f 2!, ~A4!

with

c15

GS 11
1

aDGS 1

a
2

1

2D
G~1/a!GS 1

2
1

1

aD 52
2

d21
~A5!

and

f 152F1S 1/2,
1

2
2

1

a
,
3

2
2

1

a
,2

E

g2
f~x!2aD ,

~A6!

f 252F1S 1/2,
1

2
2

1

a
,
3

2
2

1

a
,2

E

g2
f~0!2aD .

Then Eq.~A4!, for E→0, leads to solution~6!,

f~x!5F ~d21!2g2

2 G21/(d21)

uxo2xu22/(d21),

with

xo5xo„f~0!…5
2

~d21!A2g2

„f~0!…(12d)/2. ~A7!

From Eq.~A4!, and forE5” 0, we obtain that

f~x!5F ~d21!2g2

2 G21/(d21)

~xo82x!22/(d21)S 1

f 1
D 22/(d21)

,

~A8!

where nowxo85xof 2(E). That is, if E5” 0, xo depends on
two parameters:

xo85xo8„f~0!,E…. ~A9!
l
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