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Fractal geometry of critical systems
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We investigate the geometry of a critical system undergoing a second-order thermal phase transition. Using
a local description for the dynamics characterizing the system at the critical Peifit., we reveal the
formation of clusters with fractal geometry, where the term cluster is used to describe regions with a nonva-
nishing value of the order parameter. We show that, treating the cluster as an open subsystem of the entire
system, new instanton-like configurations dominate the statistical mechanics of the cluster. We study the
dependence of the resulting fractal dimension on the embedding dimension and the scaling pemhers
mal critical exponentof the system. Taking into account the finite-size effects, we are able to calculate the size
of the critical cluster in terms of the total size of the system, the critical temperature, and the effective coupling
of the long wavelength interaction at the critical point. We also show that the size of the cluster has to be
identified with the correlation length at criticality. Finally, within the framework of the mean field approxima-
tion, we extend our local considerations to obtain a global description of the system.

PACS numbegs): 05.70.Fh, 64.60.Ak

[. INTRODUCTION In Eqg. (1), g; and g, are dimensionless couplingsp
~ (volume) %, and the ultraviolet cutoff\ of the underly-

Understanding the geometry of systems near a secondig microscopic theory fixes the coarse graining sddle
order critical point is the subject of numerous recent works~A ~! of the effective system. Equatiofl) leads to the
[1]. Most of these works considered dynamics in discretestandard equation of state BT,
space(lattice), and tried to explain the formation of clusters
with fractal geometry on the embedding lattice in terms of 5ch 5 -0
the scaling propertie@ritical exponentsof the systenj2,3]. 8¢ ¢° (6>0),

In a recent worK4], we proposed a mechanism in order to

understand the formation of fractal clusterSat T for sys- and the indexs is identified with the isothermal critical ex-
tems defined in a continuous space. Based on a scale invaRonent of the system. Actiofi), being dimensionless, im-
ant effective action describing the dynamics at the criticalplies 8= —(d+2) andy=2d+2. Also introducing the di-
point, we were mainly interested in revealing how this dy-mensionless quantitieé=A "%¢ andX;=Ax;, we rewrite
namics leads to the formation of critical clusters. A generakhe effective actior{1) as follows:

class of saddle points of the effective actionTat T, turns L
out to dominate the configurations contributing to the parti- AL ds ~ 2 ~sl

tion function if we consid?ar the statistical meghanics (F))f an F°[¢]_glf dx §(V¢) 92l 4| ' )
open subsystertlustey of the global critical system. In the

present work we present in more detail and completeness the scalar quantityb describes in general the density of an
method used in Ref4] to obtain a consistent picture of the extensive physical quantity characterizing the phase transi-
local geometry at the transition point for one-dimensionaltion (like, for example, magnetization density or particle
systems, and we then apply our approach in order to descritséensity. Let us now mention some examples of theories
critical systems in higher dimensions. We also take into acwhich belong to the class of physical systems described
count finite-size effects, and we discuss the possibility ofthrough the effective actiofEq. (2)].

using different functional realizations for the order parameter O(N) three-dimensional (3D) effective theoryhe ac-
characterizing the system at the critical point. Based on &on, in the largeN limit, for spherically symmetric order
local description of the critical system we propose an algoparameter in the intern&(N) space, is written ab]

rithm, using arguments within the framework of the mean

field .app_roxima_tion, to construct a global system and to deTc[cﬁ]:)\SA’Sf d3x
termine its scaling properties.

The starting point in our investigation is the effective ac- ~
tion of a thermal system at the critical poiht= T, specified  \herex = A/T,. This action, forg=A ~3¢ andx=AXx, has
in d dimensions in terms of a macroscopic fiefd (order  the form

217)\5) 2| A 6}
| 13l°].

parameteras follows:
It belongs to the general class of E®), with g;=\>, g,
(1)  =%2w\%N)? d=3, and5=5.
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3D Ising model The effective actiod"[ o] which effec-  consider, for simplicity, the one-dimensional case. However,
tively describes the QCD at the critical point£T,.) [6],is  the extension to higher dimensions, as we will see in Sec. lll,
written as is straightforward.

In the one-dimensional case the effective action of the
critical system T=T,), resulting from Eq(2), is given by

1(d¢
where the macroscopic field~ (length) 1. This action, 21 dx

for s=A"'o andx=xA, has the form Here we will consider models for which the condition
>1 is valid. This requirement allows us to use the saddle-
point approximation to evaluate the path integration in Eg.
' (3) by replacing it through a summation over the saddle
points of action(4). As the subsysterf2 is open no bound-
It belongs to the general class of E@®), with g;=\, g,  ary conditions restrict the configurations which contribute to
=G\°73, andd=3. We recall thah =A/T. the path integral3). This point of view is essential in our

Throughout this work we use the conventiog=1 (Bolt- ~ &pproach. _ . . .
zmann constait and the energy is given in inverse length ~ The saddle-p_omzt conlegurat|0n$(x) fulfill the Euler-
units. We will also use, for simplicity, the notatiorp(x;)  Lagrange equatiod”¢/dx"=—dU(¢)/d¢, whereU(¢) is

instead of ¢4,x;) meaning always, unless otherwise stated,the concave pontenty&l(q&)z ‘92|<.f’|“- C.onS|der|ng th.'s

dimensionless quantities. equation as the'motlon of a classical particle, we obtain the
The paper is organized as follows: In Sec. Il we investi—f'rSt'Order equation

gate the statistical mechanics of the critical system dor 1(de)\2

=1 (d is the embedding space dimensiatescribed by an E= 5(&) —g,| |1, (5)

effective action of the form of Eq(2). The formation of

fractal clu'st_ers i's shown,'and the correspond_ing geometricdpereE is a conservedduring the classical motiorquantity
characteristicgsize and dimensignare determined. In Sec. identified with the total energy of the moving particle. Equa-

[l we extend the analysis to higher dime_nsions. In _Sec. Viion (5) can be integratedfor details, see the Appendixo

W(_a_study the dependence of the g_eqmetrlcal properties of_tl”&ve, forE=0, instanton-like solutions of the form

critical clusters on the coarse graining scale of the effective

theory. We also apply our approach to critical systems with a o g,

more general functional form of the order parameter. Taking $(X)=Ag/x—Xo| =¥, A1=[7(5— 1)?

care of the finite-size effects, we determine the correlation (6)

length in terms of the size of the formed clusters. Then using

a mean field approach, we construct the global system aswith

superposition of individual clusters and we explore its scal-

ing (geometrig properties. Finally in Sec. V we summarize Xo=1/2/(8—1)\g,(¢(0)) 21,

our main results and give a brief outlook. Some lengthy for- » . .

mulas referred to in the main text are given in the Appendix.! "US: forE=0, the position of the singularity, depends
only on the initial condition(0). ForE+ 0 the solution has

the form ¢(x)=Ax—x)| "D where now x,

=x,(¢(0),E) (see the Appendijx However, configurations

The statistical mechanics of the critical system is deterwith E#0, contribute to the partition functiod with a sup-

mined through the partition function pression factoe ™ 9:RIEl, suggesting that the dominant saddle

points in the path summatidiEq. (3)] are those solutions of

-1
rc[a]zTglf d* 5 (Vo) 2+ GTe(T, To)

2

+05]Bl7" . 4

R
Fc[(b]:glfo dx

1 . .
E(VU)2+ GNP 35911

rc[&]=xf a3

}1/(51)

Il. 1D SYSTEM

T the equation of motion for whick~0. In this case, Eq4)
Z,= f Dl ple "el?L. (3)  simplifies to
R
The local description implies that the integration measure in FC[¢]:291ng dx(é(x))°* L
0

Eq. (3) is over field configurations defined in an open &l

with radiusR and centex, a subset of the spasé(which in — onjy configurations with,> R give a nonvanishing contri-
fact can be |nf|n|t§30ccup|e_d t_)y the entire system. Wg call a yytion to the path integrdlEq. (3)]. In fact, the partition
cluster C the set consisting of points belonging o fynction is dominated by those saddle points for which

Q (CCQ), for which the order parametef is greater than s R Since xe (—R,R) we can easily takep(x)=const

or equal to a minimum valugutoff) ¢pi,. We thenidentify  _ o x~215-1) 1t is straightforward to show that these solu-
x with the center of the clusteZ. Without loss of generality  tions correspond to the long wavelength modes of the field
we can setx=0. The local geometrical properties of the ¢(x) by taking the Fourier transform of E¢6). We obtain
system are determined through the scaling properties of thi(k) ~e'**o/[ (§—1)k® 3], and the envelope df(k) is given
extensive quantities characterizing the clusteas we vary by k~m/x,.

the radiusR. In order to illustrate our method we will first Using the above approximation, we have
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I'=G R, 21/ 0], (7) (a)

with G;=2g,9,A?"*. The summation over the saddle points
of action (4) becomes, within this approximation, an ordi- 1000 " <M(R)> for G5 x 108
nary integration overx, with measure: Dp=du(X,) linear fit with ;k,pe 5=0.8
~x, LT DI=Dlgy - As stated above the singularity, 1004 e linear fit with slope $=0.5
must be located outside the clus@to give a nonvanishing A
contribution to the partition function of the one-dimensional g
system. This condition fixes the lower limit in the integration 5
over X, to bex, min=R. To determine the upper limit of, v
one has to go back to the definition of the clustegiven 1
previously. Without loss of generality, we can take the ex-
tensive quantity characterizing the geometrydrto be the
magnetizatiorM =f§q§(x)dx fulfilling the conditionM = p,
With u= [§dmindX=Remin- In the approximation of con- 101 102 108 104 105 106
stant configurations for the order paramegewe obtain the
upper limit forx, asx,=<(AR/u)®~ 12,

The one-dimensional partition function in now written as

(b)
7,= f (AR OH2 (54 115~ 1)] - GyRx, 2L DI D
0”*0 "

R
1000 " <M(R)> for G, =5 x 10¢

linear fit with slope $=0.83

Using this expression, it is straightforward to calculate the 100

mean value of the magnetization in the cluster é """"""" linear fit with slope s=0.5 &
= 10
R s-1)i2 =
o) [ e T
0 Z Jr o 1
o .
0
.01
®) 0.0
100 10" 102 108 10* 105 108
Using Eq.(8), we can show analyticallgsee Sec. IYthat R
in the largeG, limit (G,>1) there are three characteristic
regions determining the behavior of the integral in E&). FIG. 1. (8) The mean magnetizatigiM (R)) as a function oR
Setting Rd=A1_(5+ 1)/5,LL(5+1)’5G}/5 and RU=G(15_ DIe+L) for a 1D critical system. The parameters are chosen soGhat5
we find the following X 10% andu=1. A linear fit is also shown in order to indicate the
(i) For the regionRy<R<R,, we have(fgqﬁ(x)dx) two different fractality regions described in Sec. () The same
~RY(+1) with coefficient plot as in(a), but now withu=0. The scal&R, for the breaking of

the fractality in this case is absent. All presented quantities are in

2 arbitrary units.

I o+1
1

valuesG;=5x 10 and §=5. We recognize the central re-
) gion and the two scale’; andR,,. In Fig. 1(b) we plot, for
6+1 the same values db; and d, the results for the mean mag-

) _ netization if we ignore the breaking Ry(u—0).
leading to a fractal structure of the cluster around the point

x=0 with fractal mass dimensidi7,8] dz=6/(5+1).
(ii) This behavior crosses over f(t>R, to a different

r

lll. FRACTAL CLUSTERS FOR D>1

power law, <[Rp(x)dx>~R(O-3(~1) gyggesting the Let us now extend our approach to higher dimensions
presence of a fractal with mass dimensitp=(5—3)/(s  Starting from the two-dimensional case. We write the effec-
—1) at large scales. tive action(2) for d=2,

(iii) The lower limit Ry defines a minimal scale of the 1
critical system, below which the fractality is broken. _ f 22+ 2 S+1

The fractality in the central region characterizes the criti- Pl él=g. | drl3 Vo™ +0al 4177,

cal system in the sense that it corresponds to the scaling

behavior in the vicinity of the local observer when—0.  and look for classical saddle points in an open subs@® &f
The crossover scalR, gives a measure of the correlation The Euler-Lagrange equation, in this case, has the form
length of the finite system a=T.. In Fig. (@ we show

the numerical results for the calculation @%1) using the V2¢hp=(56+1)g,¢°,
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and the corresponding instanton-like saddle points are: d—o @27
¢:Ad(rg_r2)(27d)/2’ Ad: rgd—Z)/z,
d=2, o) =A|r—rg| 20D, (292)1/2
) (11
Ay %(5_ 12(5+1) S and transforming the path summation in the partition func-
2714 tion Z4 into an ordinary integration over,, we find
We proceed in a similar way as for the one-dimensional case, _ f d 1+d2
Lo " ; =< >~
considering the partition functiod,= [ D[ ¢]e”"cl?!. In the (M(R) Cd ré>~R (12

path summation contribute, similarly to the one-dimensional

(1D) case, saddle points for whicf lies outside the cluster for Ry<R<. This means that, fad=3, R,—. Thatis,

C. The main effect in the statistical mechanics of the 2Dthe crossover to the second fractal has disappeared. What
system is obtained through the summation over paths withappens now if we take;#0 into account? Consider the
|FO|>R(R is, once again, the radius @) which are in fact case < »<1. For a wide range of universality classes, in-

. . . - cluding theO(4) theory wheren~0.034[10], the anoma-
constant configurations determined by the 2D paranmgter lous dimensiony obeys this condition. Actually for 3D sys-

In close analogy with the one-dimensional treatment, Wetemsn is very close to zer11]. The corresponding Euler-

write the path integral iZ, as an ordinary integral over,. Lagrange equation

In this regime(constant configurationghe two-dimensional

effective action is v§¢: (6+1)g,pldt2-n/(d=2+n) (13)
['o=G,R?r 2l Die=11 cannot be solved exactly. Only an approximate instanton-like

solution can be obtained analytically:

with qu(r):Ad(rg—rz)(zfd)/z,
2A3 6+3 (d-2)12 dol4
Gy=mg; W*‘QzAgH =27g10,A5 " 2 A _((d_z)ro) ( d—2 ) ” (14
_ = —— .
V292 2026,

Performing the calculation of the mean value of the MaINCHetails concerning this calculation are given in the Appen-

. . _ 2" =, -

tization (M(R))=(/dr¢(r)), characterizing the two- iy Based on solutioril4), and following the process ap-
dlmg?asl??/gsl %Tic/%ls Gter and ”(S;E‘%,}he notati®ty  plied for one and two dimensions, we determ{i(R)) for
=A; plP* VG2 and R,= G} , we find the  gpherical symmetric clusters =3 dimensions. UsingRy

foll(q;/\lli:ng nReR :a—(5+1)/daﬂ(5+1)/d56(11/d5 and Ru:Ggl/[dJrq((SJrl)] with
i) For Rg<R<R,,
‘ ! d— 2\ [d-2+(@n2)12
(M(R))~R2(o"D), (10 a:( 29, ,
29,
with coefficient
G 2%t 7Y2
r 2 d— dF(d/Z) 0192,
S+1
a’2%’7TA2G27 (s+1) 1 and
F( 5+1 p—d— dn
2
This suggests the formation of a geometrical stuctur€ in q= Y

with fractal mass dimensiodz=26/(6+1).
(if) This behavior crosses over f&>R, to a power law e obtain the following.
(M(R))~R2l(>=2)/(>= 1] describing a local fractal with mass (i) For Ry<R<R,,
dimensiond-=2(5—2)/(6—1) at large scales.
(iii) Finally, as in the 1D case, f®R<Ry the fractality is (M(R))~R*[(d=n72] (15
broken and the mass dimension coincides with the embed-. -
ding dimension. with coefficient

The extension to dimensiord=3 needs more care. In

this case we must take into account the relation between the a2 r i
isothermal exponend and the anomalous dimensiopt & e 2m G UG+, 6+1
=(d+2—7)/(d—2+ %) [9]. But let us first examine the 4 dr(dr) ¢ 1

casen=0. Repeating the procedure followed in the 1D and S+1

2D cases we analytically obtain the saddle points of the
d-dimensional critical effective action: (i) For R>R,,, the power law
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(@

numetical solution for n=0.34
analytic approximation

<
0 T T T 1
0.0 0.5 1.0 15 20
r
(b)
107 + i‘yy
106 + +  <M(R)> for n=0.34
------------- linear fit with slope s=2.23
A 105 +
o o+
= 104 4 #
= d
Vo108 4
102 +
107 ] M
100 { .7
1 10 100 1000

R

FIG. 2. (a) A typical 3D instanton-like saddle point for
=0.34. Both the analytic approximatidudotted ling and the nu-
merical calculation(solid line) are shown(b) The mean magneti-
zation (M(R)) for the 3D case using saddle points of the form
presented ifa) to perform the corresponding statistical averaging.
As in Fig. 1, the displayed quantities are in arbitrary units.

<M(R)>~ Rl+[d(2— 77)/4].

(iii) A breaking of the fractality foR<Ry.
Comparing Egs(12) and(15) we find, for =0, the same
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region of the cluste€ and bydg the fractal dimension be-
yond the corresponding upper lini},, we have found

dp—m, d=1,23..., (16)
de=d 2 d=1,2 1
F— ml — 4,4, (7)
while for d=3 we have
~  n(d—=2)
dF—dF=T+O(772). (18

A remarkable property of the geometry of the cluster is that

d->d for all dimensions, indicating a dilution of the cluster
C for distances greater thd), from the center of the cluster.
In other words, the sizR, of the cluster gives a measure of
the correlation length in the finite system. For 3D systems,
however, the maximal size of a single clust&;,) coincides
practically with the size of the whole systemy£0, dg

~dg), and one recovers the conventional behavior of the
correlation lengthé in a second-order phase transitiaf i§

of the order of magnitude of the size of the systefFfor
critical systems of low dimensionalityd& 3) the association

of the correlation length with the size of the system needs
particular care, and this issue will be discussed in detail in
Sec. IV.

IV. EXTENSIONS AND FINITE-SIZE EFFECTS

In Sec. lll we showed the appearance of a fractal geom-
etry for clusterC in the central region of scaleRy<R
<R, . For R<Ry we obtain the breaking of fractality, and
beyondR, a more dilute fractal emerges. Therefore the lim-
its R, and Ry determine the part of the cluster with fractal
dimensiondg. In the following we will investigate how a
change of the coarse graining scaleaffects the fractality
region.

We consider the transformation

A=A, (19

power law. This serves as a consistency check of the aRynere the ultraviolet cutoffs fixes the coarse-graining scale
proximation we used. We calculated the saddle points of Eo(.A—l)_ Then Eq.(2) becomes

(13) numerically. We also calculated, in the constant con-

figuration regime, the mean magnetizatigvl (R)). The re-
sults are presented in Fig. 2. In Figia2 we plot both the

numerical and approximate solutions to the Euler-Lagrange

equation ford=3 and»=0.341 The characteristic behavior
of (M(R)) for d=3 is presented in Fig.(B). Here we have
usedG,;=10? and »=0.34. The breaking of the fractality
(for R<Ry) is clearly reproduced, while the crossover is
suppressed due to the small valuerpf

Putting together our results for one, two, and three dimen-

sions, and denoting byg the fractal dimension in the central

we used this value instead gf=0.034 valid forO(4) in order

1
P 61=gn 240D [ a2 (V07

+g2)\_(2d+2)A’2d+2|)\d/\,_d¢|5+1 ) (20)

Settingd’ =A’ "9 andx’ =A’x, Eq.(20) simplifies to

1 N
5(V4d)?

Pdgl=gn®? [ %

+ g\ d(6-2)+(d-2)) by |o+1

to magnify the difference between the approximate and numerical

solutions.

where the new constantg andg; have the values
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g1=0:0%"2,

(21)
gy=g\d(6-2)7(d-2)

We have seen that the dimensionless valud’ adndR, for
the 1D case areR,=G{’ D/(0+3)_glo-1)/(3+3)g 2(0+3)
andRy=A; °TY/°G1°~ g9l According to Eq(21) the
new values for the dimensionless limits @R&=AR, and
R4=\Ry. Using Eq.(19), we find that the quantities "R,
and A R4 do not depend on the choice of the cutaff

A'TIRI=ATIR,,

—1p -1 (22)
A, Rd:A Rd.

We may now extend these calculations for

cae 93, wnere R gff Vg e
=A2( ) Gz ~01703

(22). More complicated is the cagE=3. If we neglect the
anomalous dimensios we recover Eqs(22), but taking »

into account we cannot find an analytic expression for the
limits Ry andR,,. However, using the approximate solutions
(14), we can prove the validity of Eq§22) to a leading order

in 7.

Let us now consider the case when the order paramet

is not directly the scalar fields(x) but a power$"(x), n

>0. The extensive variable characterizing the critical geom

etry is now taken to be
M(R):f H"(x)d%x.
(3

Performing the calculation ofM(R)) at the level of the
saddle-point approximation, we obtain the following

(i) In the central fractality regioR{’<R<R(?, the di-
mension is

n
d<Fd>=d(1——

5+1) @3

where the embedding dimensioth takes the valuesd
=123....

(i) The geometry in the external regidks>R( is de-
scribed through the dimension

2n

g
de=d= 51

d=1,2, (24

also valid ford=3 if we neglect the anomalous dimension

.
Using the obvious conditiod™®=0, Eq.(24) leads to an
upper limit for the value of:

d(é6—1)
5

n=s

Using as an example the parameter valdesl and =5,
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cerning the limitsR{Y andR(® and their dependence on the
powern, we find that(i) the upper limitR‘" does not depend
onn, and(ii) the lower limitR{? has the following form for
a generah:

PR LGENCEERY

R((jd) — Ggl[d(éJr 1-n)] M]_/n

We now turn to the question of critical cluster formation
in a finite system. The effective actidiq. (2)] is in fact
valid for the ideal case of an infinite system. In order to take
finite-size effects into account in a consistent way we have to
add the termim?¢? in Eq. (2). In the following we will
consider the statistical mechanics, within the theoretical

theframework developed so far, of the modifed effective action,

which includes the above mentioned quadrati@ass term

in ¢. Thereby we restrict ourselves in the simplified 1D case,
although our results can be extended to higher dimensions
without difficulty. For the isothermal critical exponent we
also use the valué=5. The central interest in our investi-
gations is to determine the changes induced to the upper
limit R, of the central fractality region, due to the presence
of the mass term. This may lead us to a better understanding
of the relation betweeR, and the correlation length of the

ritical system.

The saddle points of the modified action are obtaified
the 1D casgusing the energy integraEq. (5)]. The domi-
nant configurations are those for whiEk= 0. We then have

fxdg— . qu(x) de
0 = #(0) (m2¢2+ 292¢6)l/2'

(25

Solving Eq.(25) for ¢, we obtain

. 2cmetmx
d(x)== (m2_292'62€t4mX)1/2’

(26)
¢?(0)

- .
1+\/1+ —922 $*(0)
m

Solution (26) for small m simplifies to

m m?—2g,c?
Y e
4g,C 8g,c’m

and taking the limitm— 0 we recover Eq(6) for 6=5.
The position of the singularity in Eq26) is

E:

(27)

~_ 1 m? -
XO__H n@. ( )

It is easy to show that,— X, [see Eq(6)] for m—0. In the

we obtainn=1 and 2 as possible values of the powieFor 4| 1owing and up to the end of this section we will, for sim-
this special choice ofl and § we obtain a rem~arkable Prop- plicity, drop the tilde oveix,. Wheneverx, appears in the
erty when the order parameterdg: in this cased” =0, and  following formulas it means expressid@8).

therefore Rﬁl) coincides with the correlation length. Con-  Inserting Eq.(28) into solution(26), we finally obtain
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em(><— Xo)
(29

\/? 1/2
¢(X):( E”‘)

(1— e4m(x—x0))1/2'

Repeating the arguments of Sec. Il we perform the path

summation in the partition function of the finite system using
the constant solutions, deduced from E2P), for x,>x:

\/7 1/2
0| gom

Within this approximation the effective action of the finite
system is

e Mo

(1_e*4m>‘o)1/2' (30)

efﬁmx0

I'o(RX)=GR G =229, "m°.

(31

(1_e—4mxo)3’

L - . d
The path summation in the partition function goes over to an,

ordinary integration ovex,, with a measure obtained from
Eq. (30):

7 jx%axdxo[ m32e™MXo(1— g~ 4MmXo) ~ 112
R
_ m3/2e—5mx0( 1— e—4m><o) — 3/2]

o -

In the limit m—0, Eq.(32) becomes

e76mx0

(1_ ef4mx0)3

GR (32

Xomax

Z~f dX,X
R

recovering the expression for the partition functionfound
in Sec. Il.
Now setting

—3/2,—G,Rx_ 3
o & T

(2) CR
Z :—l
8 sink’(2m2)
from Eqg. (32) we obtain
w(R)
Z~f dtf(t)et, (33)
(X0, max)
wheref(t) is given by
GR 1/6 1 'GR 2/3 1 éR 1/3
f(t)y=m"?3 | —| - 1+ —| 2=
t 4\t 2\t
GR\ ™ (GR) 1 GR\"®
T T (34
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FIG. 3. The upper limitR, of the central fractality region for
=1 as a function of the size iy of the critical system. We use
rbitrary units forR, andm.

accordance with the results obtained in Sec. Il.R&r1, we
obtain an analytic expression f&;,:

Inm

W om (35
For generam, however,R, can be determined only numeri-

cally. In Fig. 3 we present the results for the dependence of
R, on m, numerically solving the equatiom(R,)=1. We

have useds=1. The quantity Ih is actually the linear size

of the critical system. For a large system (!> 1), the clus-

ter sizeR, becomes saturated, becoming independemh.of
The long range correlation, in this case, is generated by suc-
cesive convolutions of neighboring clusters. In other words,
the picture for the global system, emerging from our results
(Fig. 3), is a superposition of fractal clusters with finite size,
which, by coalescense, may create long range ordering in the
critical system. In order to illustrate this effect, we have con-
structed, by simulation, a global system in two dimensions as
a set of softly interacting clusters with prescribed geometri-
cal properties. In fact, based on a mean field approximation
scheme, it is straightforward to determine the distribution of

N cIusters,P(ﬁl, o RN), with centers located at the points

(ﬁl, e ,ﬁN) in the areaSy of the global system. For this
purpose we consider the potential term in the effective ac-
tion,

U<$>=glngs d2r'[e(r')]°*,

1 277 )
<fs,d r'e(r’)),

S

1(GR\*®
iy
whereS, is the area occupied by a cluster of radiyand the

The value ofR, is then determined through the condition mean fieldé(r) is written, according to our results in Sec.

w(Ry)=1. In the limitm—0 we findR,=2""g1%g, ¥, in I, as follows:
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2 81
IN'—=—— ]
. +1 S5+3 —-1/(6+1)
¢>(r)=—(2779192u r- 2D 61 .
r 1 4 ] .
( 5+1 4
(Rgsr=R,) (37) 2'
From Egs.(36) and(37), we obtain > 1
2 5+1 0
T )
00— 1 6+1 4 jzwdm R(6) -2
()= N 5+3/Jo YV TR, ) -
5+1 44 .
(38) ] S
-84 N
whereR(6) specifies the distortion of the area occupied by : : : : : : :
the cluster in question, owing to a state of coalescense witl 6 4 ) 0 2 4 6
neighboring clusters. Introducing the mean radRis R(6) X

in integral (38), we finally obtain

2 S+1
U__1 F(5+1 4 | S
W2\ ] el
o+1
Sy=7R3, S=uR? (39)

whereS is a measure of the area occupied by a distofited
general cluster. The distribution oN clusters, in this pic-

ture, P(Ry, ... Ry)~IN e Vi(? s given by the follow-
ing area law:
P(Ry, ... RO=Z3'S)"(S,S5, .- Su) ™%,
2 5+1
1 F( o+1 4
RG] 1 5+3) 40
F( o+1
SNa5 L o
zN:ﬁf d2Ry, ... d2RN(S.S,, . .. ,Sy) .

The smallness of the exponents; in Egs. (40) (ajs
~0.006 for5=5) guarantees that the interaction of clusters
is very weak, leading to a random distribution
P(Ry, ... Ry) in the areaS, and to a Poisson behavior of
the partition function,ZN~S§a5(S’g‘/N!). It permits us,

FIG. 4. The global 2D critical system described through an ef-
fective action of the form of Eq(l). We used the parametegs
=50, g,=1, andé=5. Each full circle represents a poiim'n the
2D space occupied by the critical system witlix)> ¢min. The
coordinate andy are given in arbitrary units.

sizeR, of a single cluster and the corresponding number of
clustersN,, = (R/R,)? in the system. The number of particles

n within each cluster is then given through E4.0). The
entire net of clusters is constructed in two steps. First we
generate the positions of the centers of the clusters, treating
them as uniformly distributed random variables over a
square with siteR. Then we generate the points inside each
cluster with a distribution function specified by Ed.0). If

two clusters(say theith and thejth cluster$ overlap, then a
point in theith cluster is taken into account if the nearest
center to it is the center of thi¢h cluster, otherwise this point

is neglected. Such a construction is presented in Fig. 4. We
have used the parameter valugs1, §=5, g,=50, and
9.=1.

Although the fractal mass dimension of each cluster is the
same, the resulting global set turns out to have a different
fractal dimension. In fact, calculating the generalized dimen-
sions of the global set we observe that its geometric structure
does not correspond to a pure monofractal set. Here we have
used the method of factorial moments to perform this analy-
sis[12]. We divide the region of the global system i’
boxes of linear sizé(M =R/I). Denoting byn; the number
of points within theith box we define th@th order factorial
moment of the distribution of the points of the global set in

therefore, to treat the global system as an almost ideal gas §Pace as
clusters. The parameters of the effective theory, as well as

the size of the critical system, determine then the number of M2

formed clusters, the density within each cluster, and the size — ni(nij—21)---(nj—p+1)

of each cluster. EP(M)= M= = (41)
It is now straightforward to construct the global system as 1 M2 ) P

a set of softly interacting clusters with prescribed geometri- — 2 n;

cal properties. For simplicity let us consider a system for M? =1

which the order parameter is interpreted as density of par-

ticles. Given the linear siz®, the isothermal critical expo- For a fixed value ofp, the momentF(P(M) possesses a
nentd and the effective couplingg, andg, we calculate the power-law dependence dvl (for M>1), provided that the
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may even vanishdg=0). Therefore, the scalR, can be

e g:i dopos2.6 associated with the direct correlation lenggh=R,A ~* [9],
g4 —x—p=4 ' which coincides with the maximal size of a single cluster.
— (3) For sufficiently large systemsize>A 1) the direct
S .l slope=1.681 correlation length £;~R,A ~1) is independent of the size of
we the systeniFig. 3), and remains finite even in the thermody-
£ 4] namic limit (infinite systen.
slope=0.65 (4) The global system is built up by a random distribution
2] of critical clusters which may overlap, giving rise to a long-
range total correlation, and therefore to density fluctuations
0 at all scales. We have shown the validity of such a mecha-
nism in two dimensions by developing a suitable algorithm
2] in order to construct the global system, based on the local
0 i 5 3 4 5 description. Our results show that the entire critical system
In(M) develops strong density fluctuations, of multifractal nature,

in a wide range of scales, far beyond the size of a single
FIG. 5. The first three factorial moments for the point set pre-Cluster(Figs. 4 and k A deeper understanding of this global

sented in Fig. 4. The linear fits indicate the slopes of the correStructure, and in particular of the connection between the
sponding moments suggesting the multifractality of the underlyingfractal geometry of a single cluster and the multifractal spec-
set. trum of the entire system, remains a challenging, open ques-

tion.
point-set under consideration has a fractal structure: (® In 3D critical systems, the anomalous dimension is
F(P(M)~M%. The exponens, is related to the fractal di- aPProximately zero £~0), and the crossover scal, as-
mension of the correspond’ijng point set;=(p—1)(d sociated with a single cluster coincides practically with the

p

—d,). The dimensiongl, are the generalized dimensions Size of the global systentg~dg). This observation leads to
characterizing the systenh, being the corresponding aver- @ simple picture according to which the development of fluc-
age fractal dimension. For a monofractal set the generalizeiations at all scales, at the critical point, is realized through
dimension spectrum is given ag=d, for p=3,4, .... We the formation gf self-swmlar clustgrs at aII_ sizes. The maxi-
have calculated the first three factorial momemgs=@, 3, ~ Mum cluster sizeR,) coincides with the size of the global
and 4 as a function ofM for the set shown in Fig. 4. The System, and gives a measure of the correlation length which
results are shown in a log-log plot in Fig. 5. We find the Pecomes infinitely large, in the thermodynamic lirfiitfinite
exponents(slopes in the log-log plots,=0.65, s;=1.61,  System. In this case the geometry of the global system co-
ands,= 2.6, suggesting that the underlying set is a multifrac-incides with the geometry of a single cluster and therefore it
tal. A deeper understanding of the dimension spectrum of theemains monofractal with the same fractal dimengien

global system based on the construction described above is a Concluding, we have investigated the geometrical struc-
subject for a future investigation. ture of critical fluctuations, developed locally in a thermal
system which is described effectively by a scalar field. The
formation of fractal clusters with a mass dimensin fixed
V. CONCLUSIONS by the universality class, has been revealed, and the mecha-
Co . . . nism for generating fluctuations at all scales, in the entire
We have studied in detail the formation of critical clusterssystem based on the local properties, has been discussed. It
in a wide class of systems, undergoing a thermal phase trafs ¢ interest to note that the fluctuations of the global system
sition of second order. We have used suitable, mstanton-llkeobey a different geometry in 3D critical systetmsonofrac-
saddle-point configurations for the local-field fluctuations, intal) and in critical systems of low dimensionalitgl<3

tqrderI tot r?.atltjrat(;: thet path summgltm? o&‘ the.gartglon f?ncltmultifractab. The reason for this different behavior is due
lon. In this treaiment we were able 1o describe n€ Crilicalyggantially to the fact that in 3D systems, described by scalar
system locally, and specify the geometrical properties of

; . - Fheories, the anomalous dimensignturns out to be very
single critical cluster in terms of the parameters of the effec'small (n~0)
tive action, at the critical point. Our main results are summa- '
rized as follows.

(2) In critical systems of low dimensionalityd& 3), there APPENDIX
exist two characteristic scaleR{,R,) which specify the
geometry of any single critical cluster, namely, its maximal Integrating the first-order differential equati@), we ob-
size (R,) and its fractality regiorR;<R<R,. The fractal tain
dimension isdg= 6d/(6+ 1), in agreement with other treat-
ments on a lattice, and the minimal sc&g, below which
fractality breaks down, is the analog of the lattice spacing in X e . 6 deé
any treatment in discrete space. f = L(O) [2(E+gqu‘”1)]1’2'

(2) Beyond the scal®, (R>R,), the fractal dimension

crosses over to smaller valuad;<dg, and for a suitable
choice of the order parametep”(x) with n=d(5—1)/2] it It follows that

0
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(A1)

where

(A2)

The integrall can be determined analytically:

(e v —1

o T

(1/a)—1
2y

0 (1+¢)1’2d¢

=a

1
I’2 2F1( 1/2,16,1"‘ a,_rg>

; (A3)

1
—I’lel( 1/2,1&,1"‘ 5,—r?)

where ,F, is the hypergeometric function.
Inserting the formuld13]

r(M(B-a)
a2~ [ (< 1) 7 F,y
1

X a,a+l—'y;a+1—ﬁ;z

I'(y)I'(a—B)

- o (= 327:32
TTar-p V" 7R
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1
X ,8,,8+1—y;/3+1—a;2

into Eq. (A3) we obtain

C1
X=* (p(x)1~ D, —p(0)1 -1, (A4)
V29,
with
rl1 1 r 1 1
\raltlaTs)
€1 1 1, -1 (A5)
r'i/a)r §+—
and
1 13 1 E a
f1=2F1 1/25—5,5—5,—a¢(X) s
(AB)
1 13 1 E a
f2=2F1 1/25_5,5_5,_£¢(0) .

Then Eq.(A4), for E—0, leads to solutior6),

_1)\2
¢(x>=[(5 it

—1/(6-1)
Ixo— x| 26~ D),

with

2
Xo=Xo(¢(0))= \/F(¢(0))(175)’2- (A7)
2

C(6-1)\2
From Eq.(A4), and forE+#0, we obtain that
5—1 2 —-1/(5-1) 1 -2/(6-1)
M:{%} (X326 f_) |
1

(A8)

where nowx,=X,f,(E). That is, ifE+0,
two parameters:

X, depends on

Xo=Xo((0),E). (A9)
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